N	$=$ the total number of components in a container; N also denotes the outermost component
n	= a specific component when numbered from inside out; i.e., $\mathrm{n}=1,2, \ldots, \mathrm{~N}$
r_{n}	= outside radius of component n, inches
$\mathrm{r}_{\mathrm{n}-1}$	$=$ inside radius of component n , inches
ro	= bore radius of container, inches
${ }^{\text {r }}$ N	$=$ outer radius of container, inches
k_{n}	= wall ratio of component $\mathrm{n}, \mathrm{k}_{\mathrm{n}}=\mathrm{r}_{\mathrm{n}} / \mathrm{r}_{\mathrm{n}-1}$
K	= over-all wall ratio of container, $\mathrm{K}=\mathrm{r}_{\mathrm{N}} / \mathrm{r}_{\mathrm{O}}$
K ${ }^{\prime}$	$=$ wall ratio of inner part of ring-fluid-segment container, $K^{\prime}=r_{3} / r_{\text {o }}$
E_{n}	$=$ modulus of elasticity of component n , psi
p_{n}	$=$ pressure acting on component n at r_{n} when $\mathrm{p} \neq 0$, psi
$\mathrm{p}_{\mathrm{n}-1}$	= pressure acting on component n at $\mathrm{r}_{\mathrm{n}-1}$ when $\mathrm{p} \neq 0$, psi
p	= bore pressure, $\mathrm{psi}, \mathrm{p}_{\mathrm{o}}=\mathrm{p}$
q_{n}	$=$ residual interface pressure acting on component n at r_{n} when $\mathrm{p}=0$, psi
$\mathrm{q}_{\mathrm{n}-1}$	$=$ residual interface pressure acting on component n at r_{n-1} when $\mathrm{p}=0$, psi
S	= shear stress, psi
S_{r}	= semi-range in shear stress for a cycle of bore pressure, psi
S_{m}	$=$ mean shear stress for a cycle of bore pressure, psi
$\mathrm{S}_{\text {min }}$	$=$ minimum shear stress during a cycle of bore pressure, psi
$S_{\text {max }}$	$=$ maximum shear stress during a cycle of bore pressure, psi
σ	$=$ design tensile stress of ductile steel, psi ($\sigma \leqq$ ultimate tensile strength)
${ }^{\sigma} 1$	```= design tensile stress of high-strength steel, psi (}\mp@subsup{\sigma}{1}{}\leqq\mathrm{ ultimate tensile strength)```
$(\sigma){ }_{r}$	= semirange in tensile stress for a cycle of bore pressure, psi
$(\sigma)_{\mathrm{m}}$	$=$ mean tensile stress for a cycle of bore pressure, psi

LIST OF SYMBOLS

 (Continued)$(\sigma)_{\min }=$ minimum tensile stress during a cycle of bore pressure, psi
$(\sigma)_{\max }=$ maximum tensile stress during a cycle of bore pressure, psi
$\sigma_{r} \quad=$ radial stress, psi
$\sigma_{\theta} \quad=$ circumferential stress, psi
$\sigma_{z} \quad=$ axial (longitudinal) stress, psi
$\alpha_{r} \quad=$ semirange stress parameter for high-strength steel, $\alpha_{r}=(\sigma)_{r} / \sigma_{1}$
$\alpha_{m} \quad=$ mean stress parameter for a high-strength steel, $\alpha_{m}=(\sigma)_{m} / \sigma_{1}$
$\mathrm{M}_{1} \quad=$ bending moment on ring segment
$\mathrm{M}_{2} \quad=$ bending moment on pin segment
u = radial displacement, inches
v = circumferential displacement, inches
$\nu \quad=$ Poisson's ratio
$\mathbf{r}, \theta, \mathbf{z}=$ cylindrical coordinates for radial, circumferential, and axial directions, respectively
$\Delta_{n} \quad=$ interference required (as manufactured) between cylinder, n, and cylinder, $n+1$, inches
$\Delta_{12}=$ interference required (as manufactured) between the liner, segments, and cylinder, 3 , of the ring-segment and ring-fluid-segment containers, inches

